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Abstract

This investigation pertains to the construction of a class of generalised deformed derivative
operators which furnish the familiar finite difference and theq-derivatives as special cases. The
procedure involves the introduction of a linear operator which is multiplicative over functions of
a real variable. The validity of the general prescriptions is ascertained by considering suitable
examples of such derivatives and constructing their eigenfunctions explicitly. The relationship
of a particular version of the operator with the one-dimensional Möbius transformation is also
established.
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1. Introduction

Ever since the pioneering work of Jackson[1], there have been numerous attempts[2–4]
to carry out investigation into various aspects of deformations which have played a crucial
role in the understanding of important mathematical and physical concepts. A concrete
realisation of such attributes is easily traced to the emergence of quantum groups[5,6],
embodying appropriate deformations of algebraic and geometric structures in a particularly
elegant formulation. While there are several ways in which to study deformations, perhaps
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the most essential ingredients in such a study would invariably comprise, for instance, the
q-deformed derivative operators, coordinate multiplication operators, etc., among others.
Significantly, theseq-deformed operators have met with tremendous success when applied
to a host of problems, most notably in the realm of oscillator algebra[2,7,8]andq-calculus
[9]. This offers the main motivation to seek a generalisation of these operators in order to
be able to try applications of the underlying prescriptions to a wider class of systems.

In Section 2, we construct a generalised deformed derivative operator and study the
corresponding eigenfunctions.Section 3is devoted to a discussion of specific examples of
the generalised version of this operator, where we explicitly demonstrate the salient features
for the purpose of applications. A possible connection of the deformed operator with the
reduced Möbius transformation operator is discussed inSection 4. Concluding remarks
form contents ofSection 5.

2. The deformed derivative

To facilitate construction of the generalised deformed derivative, we consider a linear
operatorΩ̂ whose action on the product of two functions, sayf(x) andg(x), x ∈ R, can be
written as

Ω̂{f(x)g(x)} = {Ω̂f(x)}{Ω̂g(x)} = f(Ω̂x)g(Ω̂x) (2.1)

clearly displaying the property thatΩ̂ is multiplicative over functions ofx. We further assign
toΩ̂dependence on a parameterλsuch that̂Ω → I (the identity operator) in the limitλ → 0.
This requirement is necessitated by the desire to accomplish meaningful comparisons with
the more familiar derivative operators. In particular, the translation operatorΩ = Ĥ = eh∂x

such thatĤf(x) = f(x + h), while theq-dilation operatorΩ = Q̂ = eln(q)x ∂x such that
Q̂f(x) = f(qx) form examples of such an operator. An appropriate generalisation of the
deformed derivative operator is constructed through the definition

ΩDx =
{

1

(Ω̂ − I)x

}(
Ω̂ − I

)
(2.2)

which, operating on any functionf(x), gives

ΩDxf(x) = f(Ω̂x) − f(x)

(Ω̂x) − x
. (2.3)

It follows immediately thatΩDxx = 1 andΩDxc = 0 for any constantc.

Proposition 1. The deformed derivativeΩDx obeys two modified Leibniz rules

ΩDx{f(x)g(x)} = {ΩDxf(x)}g(x) + {Ω̂f(x)}ΩDxg(x), (2.4)

ΩDx{f(x)g(x)} = f(x){ΩDxg(x)} + {ΩDxf(x)}Ω̂g(x) (2.5)

and the chain rule

ΩDxf(g(x)) = ΩDg(x)f(g(x))ΩDxg(x). (2.6)
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Proof.

ΩDx{f(x)g(x)} = 1

(Ω̂ − I)x
{Ω̂f(x)g(x) − f(x)g(x)}

= 1

(Ω̂ − I)x
{[f(Ω̂x)]g(x) − [f(Ω̂x)]g(x)

+ f(Ω̂x)g(Ω̂x) − f(x)g(x)}
= 1

(Ω̂ − I)x
{[f(Ω̂x) − f(x)]g(x) + f(Ω̂x)[g(Ω̂x) − g(x)]}

=
{

f(Ω̂x) − f(x)

(Ω̂x) − x

}
g(x) + f(Ω̂x)

{
g(Ω̂x) − g(x)

(Ω̂x) − x

}

= {ΩDxf(x)} g(x) + Ω̂f(x){ΩDxg(x)}.
The second Leibniz rule(2.5)follows from the first if we simply interchange the roles off

andg. To prove the modified chain rule, we have

ΩDx{f ◦ g}(x) = {f ◦ g}(Ω̂x) − {f ◦ g}(x)

(Ω̂x) − x

=
{

f(g(Ω̂x)) − f(g(x))

g(Ω̂x) − g(x)

}{
g(Ω̂x) − g(x)

(Ω̂x) − x

}

=
{

(Ω̂ − I)f(g(x))

(Ω̂ − I)g(x)

}{
(Ω̂ − I)g(x)

(Ω̂ − I)x

}

= ΩDg(x)f(g(x))ΩDxg(x). �

In the limit λ → 0, we see thatΩDx → d/dx = ∂x. Note that this generalised derivative
specialises to the familiar finite difference derivativeh∆x:

h∆xf(x) = f(x + h) − f(x)

h

and theq-derivativeqDx:

qDxf(x) = f(qx) − f(x)

(q − 1)x

as expected.

2.1. Inverse deformed derivative (ΩD−1
x )

The nonsingular behaviour of the operatorΩDx can be ascertained only if the exis-
tence of its inverseΩD−1

x is guaranteed. Consequently, the conditionΩDx ◦ ΩD−1
x = I

must necessarily be satisfied on analytic functions. We, therefore, proceed to define such
an inverse. The operation of the deformed derivativeΩDx on an arbitrary analytic function
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f(x) can be rewritten in the form:

ΩDxf(x) = 1

(I − Ω̂)x
(I − Ω̂)f(x) (2.7)

which allows us to formally invert the operatorΩDx to get the inverse operatorΩD−1
x

through the definition

ΩD−1
x =

∞∑
j=0

Ω̂j{(I − Ω̂)x}. (2.8)

As an illustrative example, let us compute the operation ofΩD−1
x on f(x) = xn (say). We

then have

ΩD−1
x xn =

∞∑
j=0

Ω̂j{(I − Ω̂)x}xn =
∞∑

j=0

Ω̂j{xn+1 − (Ω̂x)xn}

=
∞∑

j=0

{Ω̂jxn+1 − (Ω̂j+1x)(Ω̂jxn)}. (2.9)

The operation ofΩDx on (2.9)gives

ΩDx ◦ ΩD−1
x xn = ΩDx

∞∑
j=0

{Ω̂jxn+1 − (Ω̂j+1x)(Ω̂jxn)}

=
(

1

(Ω̂x) − x

)
Ω̂

∞∑
j=0

{Ω̂jxn+1 − (Ω̂j+1x)(Ω̂jxn)}

−
∞∑

j=0

{Ω̂jxn+1 − (Ω̂j+1x)(Ω̂jxn)}



=
(

1

(Ω̂x) − x

)


∞∑
j=0

{Ω̂j+1xn+1 − (Ω̂j+2x)(Ω̂j+1xn)

− Ω̂jxn+1 + (Ω̂j+1x)(Ω̂jxn)}



=
(

1

(Ω̂x) − x

)
{Ω̂xn+1 − (Ω̂2x)(Ω̂xn) − xn+1 + (Ω̂x)xn

+ Ω̂2xn+1 − (Ω̂3x)(Ω̂2xn) − (Ω̂xn+1) + (Ω̂2x)(Ω̂xn) + · · · }
=
(

1

(Ω̂x) − x

)
{(Ω̂x)xn − xn+1} = xn.

Hence the necessary condition

ΩDx ◦ ΩD−1
x = I (2.10)

is satisfied by the inverse derivativeΩD−1
x .
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2.2. Eigenfunctions

The eigenfunctions of the deformed derivative operatorΩDx can be shown to admit a
product representation. The following proposition justifies this statement.

Proposition 2. If

ΩDxEΩ(x) = EΩ(x), (2.11)

then the functionEΩ(x) is given by

EΩ(x) =
∞∏

j=0

1

1 + Ω̂j(Ω̂ − I)x
. (2.12)

Proof. Let the functionEΩ(x) be defined as

EΩ(x) =
∞∏

j=0

cj(x), (2.13)

wherecj(x) is a sequence of functions ofx

cj(x) = Ω̂jc0(x) = c0(Ω̂
jx). (2.14)

Then

ΩDxEΩ(x) =
{

1

(Ω̂ − I)x

}
(Ω̂ − I)

∞∏
j=0

cj(x)

=
{

1

(Ω̂ − I)x

}


∞∏
j=0

Ω̂cj(x) −
∞∏

j=0

cj(x)




=
{

1

(Ω̂ − I)x

}


∞∏
j=0

cj+1(x) −
∞∏

j=0

cj(x)




=
{

1

(Ω̂ − I)x

}


∞∏
j=0

cj(x)

c0(x)
−

∞∏
j=0

cj(x)




=
{

1

(Ω̂ − I)x

}
{c−1

0 (x) − 1}
∞∏

j=0

cj(x)

=
{

1

(Ω̂ − I)x

}
{c−1

0 (x) − 1}EΩ(x).

Since the functionc0(x) (cf. (2.14)) is an arbitrary function ofx, we may choose

c−1
0 (x) = 1 + (Ω̂x) − x, (2.15)
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so that the functionscj(x) can be cast in the form

cj(x) = Ω̂jc0(x) = c0(Ω̂
jx) = 1

1 + Ω̂j(Ω̂ − I)x

which, in turn, gives the desired eigenfunction

EΩ(x) =
∞∏

j=0

1

1 + Ω̂j(Ω̂ − I)x
. � (2.16)

In view of the relationΩDxEΩ(x) = EΩ(x), the eigenfunctionEΩ(x) can be interpreted
as theΩ-exponential function. An alternative description of the eigenfunctionsEΩ(x)

proceeds via the series representation in terms of the inverse operatorΩD−1
x . For this

purpose, we write

EΩ(x) =
∞∑

j=0

ej(x), (2.17)

where functionsej(x) are defined as

ej(x) = ΩDxej+1(x) or ΩD−1
x ej(x) = ej+1(x) (2.18)

with the normalisatione0(x) = 1. Relation(2.17)now becomes

EΩ(x) =
∞∑

j=0

(ΩD−1
x )je0(x) =

∞∑
j=0

(ΩD−1
x )j. (2.19)

3. Examples of the operator Ω̂λ,k

As remarked inSection 2, the linear operator̂Ω is not only multiplicative over functions
of x, but is also characterised by a deformation parameterλ. For a complete specification,
however, it carries an additional indexk ∈ Z

+ signifying the degree of the operatorΩ̂. We
illustrate this by considering a class of operators given by

Ω̂λ,k = exp(−λxk+1∂x) (3.1)

and study their action on functions of the real variablex.

Proposition 3. If f(x) = xn, (n ∈ Z
+), then

Ω̂λ,kx
n =

{
x

(1 + λkxk)1/k

}n

. (3.2)

Proof. Let us consider the operation

exp(−λxk+1∂x)x
n =

∞∑
n=0

(−λ)n

n!
(xk+1∂x)

nxn

= xn + (−λ)nxk+n + (−λ)2

2!
n(n + k)x2k+n + · · ·
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= xn

{
1+

(−n

k

)
(λkxk)+ 1

2!

(−n

k

)(−n

k
− 1

)
(λkxk)2 + · · ·

}

= xn(1 + λkxk)−n/k =
{

x

(1 + λkxk)1/k

}n

. � (3.3)

On the other hand, if we consider another class of operators

Ω̂λ,k = exp

(
−λ

2
{x̂k+1, ∂x}

)
, (3.4)

where{ , } is the anticommutator, then their operation given by the adjoint action on the
position operator̂x results in the equivalence of(3.1) and (3.4)which can be readily seen
as follows:

Ω̂λ,kx̂Ω̂−1
λ,k = exp

(
−λ

2
{x̂k+1, ∂x}

)
x̂ exp

(
λ

2
{x̂k+1, ∂x}

)
, (3.5)

Ω̂λ,kx̂Ω̂−1
λ,k = x̂ +

[
−λ

2
{x̂k+1, ∂x}, x̂

]
+ 1

2!

[
−λ

2
{x̂k+1, ∂x},

[
−λ

2
{x̂k+1, ∂x}, x̂

]]
+ · · · (3.6)

using the Baker-Campbell-Hausdorff formula. The evaluation of the nested commutators
proceeds through the following steps:[

−λ

2
{x̂k+1, ∂x}, x̂

]
= −λ

2

[
x̂k+1 ∂x + ∂xx̂

k+1, x̂
]

= −λx̂k+1 = x̂

(
−1

k

)
(λkx̂k),[

−λ

2
{x̂k+1, ∂x},

[
−λ

2
{x̂k+1, ∂x}, x̂

]]
=
[
−λ

2
{x̂k+1, ∂x}, −λx̂k+1

]

= λ2(k + 1)x̂2k+1 = x̂

(
−1

k

)(
−1

k
− 1

)
(λkx̂k)2

and so on. All these terms add up to give

Ω̂λ,kx̂Ω̂−1
λ,k = x̂

{
I +

(
−1

k

)
(λkx̂k) + 1

2!

(
−1

k

)(
−1

k
− 1

)
(λkx̂k)2 + · · ·

}

= x̂

(I + λkx̂k)1/k
(3.7)

leading finally to the result

Ω̂λ,kx̂
nΩ̂−1

λ,k =
{

x̂

(1 + λkx̂k)1/k

}n

(3.8)

which is precisely the same as(3.2). We, therefore, conclude that the class of operators(3.1)
and (3.4)are essentially equivalent.
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A cursory inspection of the operatorsΩ̂λ,k ((3.1)or (3.4)) helps in defining the relations

(Ω̂λ,k)
−1 = Ω̂−λ,k (3.9)

and

Ω̂λ,k ◦ Ω̂µ,k = Ω̂λ+µ,k. (3.10)

These exhibit interesting consequences in that ifΩ̂λ,kx = y, thenΩ̂−1
λ,ky = x. Writing

explicitly, if we have

y = Ω̂λ,kx = x

(1 + λkxk)1/k
, (3.11)

then

x = Ω̂−1
λ,ky = y

(1 − λkyk)1/k
, (3.12)

where we have made use of(3.3)for the case whenn = 1. This is an interesting off-shoot of
the foregoing considerations, allowing construction of a class of other operators possessing
this unique property.

In more general terms, let us consider the operator

Ω̂λ,µ = exp(λf(x) ∂x) (3.13)

such thatΩ̂λ,µx = y. In view of the above structures, the functionsf(x) andf(y) are
invertible and therefore admit the forms:

f(y) = f(x)

1 + λf(x)
, f(x) = f(y)

1 − λf(y)
. (3.14)

For instance, if we compute the action ofΩ̂λ,µ onf(x) = exp(−µx), say, we find

Ω̂λ,µx = x + µ−1 ln[1 + λµ e−µx] (3.15)

which constitutes a two-parameter(λ, µ) deformation of the derivative operator. Note,
however, that̂Ωλ,µ → I in the limiting case whenλ → 0 which is in complete conformity
with what we expect. In a similar way, we also evaluate the limit ofΩ̂λ,µx (3.15)when
µ → 0 with the result

lim
µ→0

{x + µ−1(λµ e−µx) + O(µ)} = x + λ. (3.16)

This is obviously a manifestation of the finite difference operator limµ→0Ω̂λ,µ = exp(λ ∂x),
characterised by the parameterλ. We remark in passing that the form(3.15)can be alter-
natively represented as

Ω̂λ,µx = µ−1 ln[eµx + λµ]. (3.17)
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3.1. The associated derivative

The operation of the deformed derivative associated withΩ̂λ,k on a functionf(x) can be
expressed as

Ωλ,k
Dxf(x) = f(Ω̂λ,kx) − f(x)

(Ω̂λ,kx) − x
. (3.18)

Now

(Ω̂λ,kx) − x = x

(1 + λkxk)1/k
− x = x

{
1 − (1 + λkxk)1/k

(1 + λkxk)1/k

}
(3.19)

so that

Ωλ,k
Dxf(x) = (1 + λkxk)1/k

x[1 − (1 + λkxk)1/k]

{
f

(
x

(1 + λkxk)1/k

)
− f(x)

}
. (3.20)

If we choosef(x) = xn, then

Ωλ,k
Dxx

n = [[n]]λ,kx
n−1, (3.21)

where

[[n]]λ,k = [[n]]λ,k(x) = {1/(1 + λkxk)1/k}n − 1

{1/(1 + λkxk)1/k} − 1
, (3.22)

[[n]]λ,k = [[n]]λ,k(x) =
∞∑

n=0

(1 + λkxk)−n/k. (3.23)

Note that [[n]]λ,k is now a function ofx.

3.2. Deformed inverse eigenfunctions

We have already seen that theΩ-exponential functionsEλ(x) are the eigenfunctions of
ΩDx. This enables us to write down the eigenvalue equation:

ΩDxEλ(µx) = µEλ(µx), (3.24)

whereµ is regarded as an eigenvalue ofΩDx with the corresponding eigenfunctionEλ(µx).
Explicitly, this can be written as

Ω̂λ,kEλ(µx) = {1 + µ(Ω̂λ,k − I)x}Eλ(µx) (3.25)

which reduces to

Ω̂λ,kEλ(x) = {1 + (Ω̂λ,k − 1)x}Eλ(x) (3.26)

for µ = 1. Rewriting(3.25), we have

Eλ(µx) = Ω̂−1
λ,k{1 + µ(Ω̂λ,k − 1)x}Eλ(µx), (3.27)
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Eλ(µx) = {1 + µ(1 − Ω̂−1
λ,k)x}Eλ(µΩ̂−1

λ,kx), (3.28)

Eλ(µx) = {1 + µ(1 − Ω̂−λ,k)x}Eλ(µΩ̂−λ,kx), (3.29)

where use has been made of the relationΩ̂−1
λ,k = Ω̂−λ,k. Lettingλ → −λ andµ = −1 in

(3.29), we obtain

E−λ(−x) = {1 + (Ω̂λ,k − 1)x}E−λ(−Ω̂λ,kx), (3.30)

E−λ(−x) = {1 + (Ω̂λ,k − 1)x}Ω̂λ,kE−λ(−x). (3.31)

Eqs. (3.26) and (3.31)lead to

Ω̂λ,kEλ(x)Ω̂λ,kE−λ(−x) = Eλ(x)E−λ(−x), (3.32)

i.e.

Ω̂λ,k{Eλ(x)E−λ(−x)} = Eλ(x)E−λ(−x) (3.33)

or

(Ω̂λ,k − I){Eλ(x)E−λ(−x)} = 0. (3.34)

Hence

Ωλ,k
Dx{Eλ(x)E−λ(−x)} = 0 (3.35)

which clearly shows that the productEλ(x)E−λ(−x) under the action of the deformed
derivative operatorΩλ,k

Dx differentiates to zero. Ordinarily, we would expect that only
constant functions are endowed with this property. An important consequence of this obser-
vation is that any functionF(x), not necessarily a constant, with the propertyF(x) = F(Ω̂x)

will differentiate to zero under the action of the generalised derivativeΩλ,k
Dx.

We now consider the case whereΩ̂λ,k is identified with the translation operator, i.e.
Ω̂λ,k = Ĥ = eh ∂x . It is then easy to see from(3.26)that

ĤEh(x) = {1 + (Ĥ − 1)x}Eh(x) = (1 + h)Eh(x). (3.36)

Consequently, the eigenfunctions of the translation operatorĤ are exactly the same as those
of the deformed derivative operator associated withĤ . On the other hand, if̂Ωλ,k is taken
to be theq-dilation operator, i.e.̂Ωλ,k = Q̂ = exp( ln(q)x ∂x), then we obtain

E−1
q (x) = Eq−1(−x) (3.37)

as expected.

4. The conformal (Möbius) transformation

The mathematical framework developed thus far will now be cast in a proper perspec-
tive so as to make contact with situations that hold promise for possible applications. The
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translation operator̂H and theq-dilation operatorQ̂, which give rise to the finite dif-
ference derivative and theq-derivative, respectively, may be regarded as generators of a
one-dimensional affine group. In view of our consideration of the deformed derivative op-
erator, of whichĤ andQ̂ are special cases, it would seem instructive to visualise a situation
where the operator̂Ωλ,k, affecting the generalisation, can indeed be assigned the role of
an additional generator, resulting in some larger algebraic structure. To this end, we take
recourse to the special conformal (Möbius) transformation and carry out an embedding in
conjunction with the generatorŝH andQ̂. The action of a matrix

M =
(

a b

c d

)

on a variablex is defined as

M  x = ax+ b

cx+ d
, ad �= bc. (4.1)

The operator̂Ωλ,k (cf. (3.1)) for k = 1 takes the form

Ω̂ = Ω̂λ,k=1 = exp(−λx2 ∂x) (4.2)

whose action on a variablex (cf. (3.2)) is given by

Ω̂x = x

1 + λx
. (4.3)

Defining theΩ, Q andH matrices as

Ω =
(

1 0

λ 1

)
, Q =

(
q1/2 0

0 q−1/2

)
, H =

(
1 h

0 1

)
(4.4)

the corresponding actions onx are represented as

Ω  x = x

λx + 1
, Q  x = qx, H  x = x + h. (4.5)

The general Möbius operatorM is then obtained via the composition

M = ΩQH, (4.6)

i.e. (
a b

c d

)
=
(

q1/2 q1/2h

q1/2λ q1/2λh + q−1/2

)
. (4.7)

Equivalently, we express the Möbius transformations on the variablex in the form

M̂x = Ω̂Q̂Ĥx, (4.8)

M̂x = exp[−λx2 ∂x + ln(q)x ∂x + h ∂x]x. (4.9)

It turns out thatad− bc = 1. Thus the set of 2× 2 matricesM generate the SL(2) group
structure. In other words, the operatorΩ̂ serves as an extra generator, in addition to the
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other two generators typified by the translation operatorĤ and theq-dilation operatorQ̂,
to generate the group SL(2) as well as its subgroups. The operatorΩ̂ is designated as the
reduced Möbius transformation operator and conforms to the realisation of the differential
operators in view of the transformation(4.1).

5. Concluding remarks

A modest attempt has been made to construct a generalised version of the deformed
derivative operators within the context of a linear operatorΩ̂ whose action on functions of a
real variable is considered to be multiplicative. The veracity of the mathematical formulation
is checked against suitable illustrative examples. We note that the familiar forms of the finite
difference and theq-derivatives are readily obtained as particular cases of the generalised
structure. Such an observation lends credence to the validity of the procedure adopted
in carrying out this construction. We have also addressed, though briefly, the possibility
of casting the operator̂Ω in a format compatible with the special conformal or reduced
Möbius transformation operator. The inclusion of this operator, along with the translation
operatorĤ and theq-dilation operatorQ̂, to generate the SL(2) group is expected to be
significant in seeking further applications to situations of physical interest such as the
conformal transformations. The construction also forms a natural paradigm to investigate
generalisation of theq-oscillators and theq-calculus.
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